- Joined
- 3 Nov 2010
- Messages
- 27,849
- Solutions
- 8
- Reaction score
- 38,401
Our Google Cloud AI team has been making good progress towards this goal. In 2017, we introduced Google Cloud Machine Learning Engine, to help developers with machine learning expertise easily build ML models that work on any type of data, of any size. We showed how modern machine learning services, i.e., APIs—including Vision, Speech, NLP, Translation and Dialogflow—could be built upon pre-trained models to bring unmatched scale and speed to business applications. Kaggle, our community of data scientists and ML researchers, has grown to more than one million members. And today, more than 10,000 businesses are using Google Cloud AI services, including companies like Box, Rolls Royce Marine, Kewpie and Ocado.
But there’s much more we can do. Currently, only a handful of businesses in the world have access to the talent and budgets needed to fully appreciate the advancements of ML and AI. There’s a very limited number of people that can create advanced machine learning models. And if you’re one of the companies that has access to ML/AI engineers, you still have to manage the time-intensive and complicated process of building your own custom ML model. While Google has offered pre-trained machine learning models via APIs that perform specific tasks, there's still a long road ahead if we want to bring AI to everyone.
To close this gap, and to make AI accessible to every business, we’re introducing Cloud AutoML. Cloud AutoML helps businesses with limited ML expertise start building their own high-quality custom models by using advanced techniques like learning2learn and transfer learning from Google. We believe Cloud AutoML will make AI experts even more productive, advance new fields in AI and help less-skilled engineers build powerful AI systems they previously only dreamed of.
Our first Cloud AutoML release will be Cloud AutoML Vision, a service that makes it faster and easier to create custom ML models for image recognition. Its drag-and-drop interface lets you easily upload images, train and manage models, and then deploy those trained models directly on Google Cloud. Early results using Cloud AutoML Vision to classify popular public datasets likeImageNet and CIFAR have shown more accurate results with fewer misclassifications than generic ML APIs.
Here’s a little more on what Cloud AutoML Vision has to offer:
- Increased accuracy: Cloud AutoML Vision is built on Google’s leading image recognition approaches, including transfer learning and neural architecture search technologies. This means you’ll get a more accurate model even if your business has limited machine learning expertise.
- Faster turnaround time to production-ready models: With Cloud AutoML, you can create a simple model in minutes to pilot your AI-enabled application, or build out a full, production-ready model in as little as a day.
- Easy to use: AutoML Vision provides a simple graphical user interface that lets you specify data, then turns that data into a high quality model customized for your specific needs.
Cloud AutoML: Making AI accessible to every business